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‡ Laboratoire Ĺeon Brillouin, CEA-CENS Saclay, 92290 Gif-sur-Yvette Cedex, France

Received 18 December 1996

Abstract. A general view of the fluoride scheelite LiYF4 lattice dynamical properties is
proposed. The symmetry properties of the vibrations and the symmetry-adapted eigenvectors of
the scheelite structure have been determined for the most important directions of the Brillouin
zone, namely(ξ00), (ξξ0) and (00ξ). The low-frequency phonon spectrum along these three
directions has been measured by inelastic neutron scattering. The corresponding data, together
with the measured sound velocities and the Raman- and infrared-active phonon frequencies, are
described in the framework of a rigid ion model. The average error between experimental results
and calculated frequencies is less than 5%. The most important normal modes of vibration and
the one-phonon density of states are deduced.

1. Introduction

Compounds which crystallize in the scheelite structure are the subject of many studies,
mainly because generally they are optically transparent insulators and are of interest in
laser optical studies [1]. Among these compounds, as already mentioned in paper I, LiYF4

is the most widely used fluoride laser host crystal, generally doped with trivalent rare-
earth ions(Nd3+,Eu3+, . . .) and, more recently, with uranium [2]. On the other hand,
some oxide scheelites, namely BiVO4 and LaNbO4, undergo a pseudo proper ferroelastic
phase transition, which is a quite rare phenomenon [3]. The luminescence-line profiles
(provided that the electron–phonon coupling is not negligible) and the mechanism of the
phase transition depend on the phonon spectra of the corresponding material, but none of
the scheelite phonon dispersion curves or density of states have ever been published.

The purpose of the present paper is to provide bases for the description of the lattice
dynamics of scheelites, supported by the results of an experimental study on LiYF4. This
fluoride scheelite has been chosen with regard to its technological importance and to the large
number of experimental data already available in the literature (elastic constants, Raman
and infrared frequencies). Moreover, large LiYF4 single crystals are produced for laser
applications, which enables inelastic neutron scattering measurements of the low-frequency
phonon spectrum in good conditions. The choice of a fluoride scheelite like LiYF4 is also
dictated by the weak ions polarizabilities: this is a prerequisite for the use of a simple
description of the phonon spectrum, like a rigid ion model, involving a small number of
parameters. Actually, most of the force constants can be estimated from the data available
in the literature [4], what reduces the number of adjustable parameters and ensures to obtain
the most simple and tractable information about lattice dynamics in this structure. The
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Figure 1. The unit of structure of scheelite compoundsAMX4, represented in the tetragonal
crystallographic basis(a, b, c). The symmetry centre, which relates the two formula units, lies
at (0, 1

4 ,
1
8). The labelling of the atoms, already used in paper I, is developed in table 2.

Figure 2. The Brillouin zone of a tetragonal body-centred structure withc > a.

calculation and refinement of the phonon spectrum by a rigid ion model also allows us to
report in this paper the main atomic movements under some of the zone-centre vibrational
modes, and the one-phonon density of states.

The group theory analysis of the scheelite structure vibrations is reported in section 2,
the experimental determination of the low-frequency modes of LiYF4 by inelastic neutron
scattering will be described in section 3 and the modelization by a rigid ion model will be
introduced and compared with experiment reults in section 4.
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Table 1. Distribution of the scheelites vibrational modes for points of the Brillouin zone among
the irreducible representations (IR) of the wavevector’s point groupG0(q) (sub-group of C4h,
indicated in parentheses). The compatibility relations between the symmetry types of the lattice
vibrations are symbolized by continuous lines. Note that all the modes at theZ andX points
are doubly degenerated.

6(Ch) F (Ch)

0(C4h) q = (q, 0, 0) q = (q, 0, 0) Z(C4h) 3(C4) 1(Ch) X(C2h)

q = (0, 0, 0) (q < q(K)) (q > q(K)) q
(
0, 0, 2π

c

)
q = (0, 0, q) 0 q = 1√

2
(q, q,0) q = ( π

a
, π
a
, 0
)

2. Symmetry types of the lattice modes

Scheelite compounds belong to the I41/a(C6
4h) space group and their body-centred tetragonal

cell, shown in paper I, contains four formula units, i.e. twoAMX4 units per primitive cell
(figure 1); hence there are 36 vibrational modes for eachq vector in the reciprocal space.

The symmetry analysis of the vibrational modes has been performed for the most repre-
sentative reciprocal directions in this structure, namely the so-called0KZ, 0Z and0X lines
(figure 2). For the correspondingq vectors, the distribution of the 36 vibration modes among
the irreducible representations of the wavevector groupG0(q) is done following the method
of Maradudin and Vosko [5]. The results are listed in table 1 together with the compatibility
relations, the irreducible representations being labelled according to a choice of origin at the
Li site. We used the notation of Zaket al [6] for inner and boundary points of the Brillouin
zone, and the more usual notation of Wigner and Mulliken for zone-centre phonons.

The corresponding symmetry-adapted displacement vectors are given in table 2 for inner
and boundary high-symmetry points. Results for the zone centre are reported in paper I.

As shown in table 1, the number of different irreducible representations is rather small
out of the zone centre: only one possible symmetry at theX point, two different symmetries
for Z point, 0KZ and 0X lines, and finally three on the0Z line, one being doubly
degenerated.

3. Measurements of the low-frequency phonon spectrum

3.1. Experimental details

The single crystal of LiYF4 used for the experiments has been grown by J Y Gesland, using
the Czochralski technique, the pull-out axis beinga. The crystallographic parameters are
a = b = 5.279 Å and c = 11.021 Å [7].

The inelastic neutron-scattering measurements have been performed at the Laboratory
Léon Brillouin (‘LLB’, Saclay, France), at room temperature on the thermal-beam triple-

axis spectrometer 1T. A final wavevector of the neutronkf = 2.662 Å
−1

has been used,
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Table 2. Symmetry-adapted vectors in the scheelite structure determined by a group theory
analysis for the main points and lines of the Brillouin zone. Theρj coefficients are defined as
eiπαj , αj being thej th reduced coordinate of theq-vector in the basis (a∗, b∗, c∗) (ρ = ρ3 for
the0Z line). ai , bi andci coefficients may be complex. The modes withZ1, Z2, 32⊕4 or X1

symmetries are doubly degenerated: the second eigenvector may be deduced from the first by
complex conjugation.

0KZ(ξ, 0, 0)
Atom (no.) 0Z(0, 0, ξ) 0X(ξ, ξ,0) X( 1

2 ,
1
2 , 0) Z(0, 0, 1)

(reduced 61 62

coordinates) F2 F4 32⊕4 31 33 11 12 X1 Z1 Z2

Li(1) a1 a1 a1 0 0 a1 a1 a1 0 a1

(0, 0, 0) b1 b1 b1 0 0 b1 b1 b1 0 b1

c1 c1 0 c1 c1 c1 c1 c1 c1 0
Li(2) a1 −a1 a2 0 0 ρ2a1−ρ2a1 ia1 0 a2

(0, 1
2 ,

1
4) b1 −b1 b2 0 0 ρ2b1−ρ2b1 ib1 0 b2

−c1 c1 0 ρc1−ρc1−ρ2c1 ρ2c1 −ic1 ic1 0

Y(3) a2 a2 a3 0 0 a2 a2 a2 0 a3

(0, 0, 1
2) b2 b2 b3 0 0 b2 b2 b2 0 b3

c2 c2 0 c2 c2 c2 c2 c2 ic2 0
Y(4) a2 −a2 a4 0 0 ρ2a2−ρ2a2 ia2 0 a4

(0, 1
2 ,

3
4) b2 −b2 b4 0 0 ρ2b2−ρ2b2 ib2 0 b4

−c2 c2 0 −ρc2−ρc2−ρ2c2 ρ2c2 −ic2 c2 0

F(5) a3 a3 a5 a3 a3 a3 a3 a3 a3 a5

(x, y, z) b3 b3 b5 b3 b3 b3 b3 b3 b3 b5

c3 c3 c5 c3 c3 c3 c3 c3 c3 c5

F(6) a4 a4 a5 −a3 −a3 a4 a4 a4 −a3 a5

(−x,−y, z) b4 b4 b5 −b3 −b3 b4 b4 b4 −b3 b5

c4 c4 −c5 c3 c3 c4 c4 c4 c3 −c5

F(7) a5 a5 a6 a4 a4 a5 a5 a5 a4 a6

(−y, x,−z) b5 b5 b6 b4 b4 b5 b5 b5 b4 b6

c5 c5 c6 c4 c4 c5 c5 c5 c4 c6

F(8) a6 a6 a6 −a4 −a4 a6 a6 a6 −a4 a6

(y,−x,−z) b6 b6 b6 −b4 −b4 b6 b6 b6 −b4 b6

c6 c6 −c6 c4 c4 c6 c6 c6 c4 −c6

F(9) a3 −a3 a7 ρb4−ρb4 ρ2a3−ρ2a3 ia3 ib4 a7

(x, y + 1
2 ,

1
4 − z) b3 −b3 b7 −ρa4 ρa4 ρ2b3−ρ2b3 ib3 −ia4 b7

−c3 c3 c7 ρc4−ρc4−ρ2c3 ρ2c3 −ic3 ic4 c7

F(10) a4 −a4 a7 −ρb4 ρb4 ρ2a4−ρ2a4 ia4 −ib4 a7

(−x, 1
2 − y, 1

4 − z) b4 −b4 b7 ρa4−ρa4 ρ2b4−ρ2b4 ib4 ia4 b7

−c4 c4 −c7 ρc4−ρc4−ρ2c4 ρ2c4 −ic4 ic4−c7

F(11) a5 −a5 a8 −ρb3 ρb3 ρ2a5−ρ2a5 ia5 −ib3 a8

(−y, x + 1
2 ,

1
4 + z) b5 −b5 b8 ρa3−ρa3 ρ2b5−ρ2b5 ib5 ia3 b8

−c5 c5 c8 ρc3−ρc3−ρ2c5 ρ2c5 −ic5 ic3 c8

F(12) a6 −a6 a8 ρb3−ρb3 ρ2a6−ρ2a6 ia6 ib3 a8

(y, 1
2 − x, 1

4 + z) b6 −b6 b8 −ρa3 ρa3 ρ2b6−ρ2b6 ib6 −ia3 b8

−c6 c6 −c8 ρc3−ρc3−ρ2c6 ρ2c6 −ic6 ic3−c8

with a pyrolytic graphite filter preventing high-order contamination.
Because of symmetry considerations, experimental data had to be collected in three

different scattering planes, namely(hk0), (h0l) and (hhl). Because of the large neutron
absorption cross section of natural lithium, we used different slabs for the measurements:
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Figure 3. The inelastic neutron-scattering experimental spectra obtained at room temperature
with a constant transfer vectorQ = (4, 0, ξ), ξ varying from 0 (0 point) to 1 (Z point), in the
frequency range [1, 6 THz]. The symmetry of the zone-centre and zone-boundary modes has
been indicated.

one cut perpendicularly to the four-fold axisc (21× 20× 5 mm3) for the (h0l) and (hhl)
scattering planes, and another cut perpendicularly to thea-axis (31× 26× 5 mm3) for the
(hk0) and(h0l) planes.

Due to the complexity of the phonon spectrum, we had to proceed in a self-consistent
way, with the help of dynamical structure factor calculations based on a rigid ion model
(see section 4) adjusted with the acquired experimental results.

3.2. Data analysis and results

The experimental data were treated with the help of a fitting program (AFIT of the LLB)
in order to obtain parameters as physically meaningful as possible. The program takes into
account the resolution function of the spectrometer and calculates the lineshape by folding
this resolution function with the neutron scattering cross section where the phonon modes
are taken as damped harmonic oscillators. The dispersion of the modes is accounted for in
a linear approximation. The energy, width and intensity of the oscillators are then deduced
by fitting the calculated lineshapes to the experimental data. In many cases, due to the
complexity of the phonon spectrum, we had to use self-consistently the dynamical structure
factor calculations to fix the number of modes involved in a given measurement. Figure 3
illustrates this difficulty: the intensity measured in (Q, ω) space, along the0Z line (4, 0, ξ)
with ξ = 0–1, is displayed, revealing the rapid evolution withξ of the intensity of the
vibrational modes.

The phonon frequencies for wavevectors in the three main symmetry directions [100],
[110] and [001] have been reported in figure 4 together with the calculated dispersion curves
obtained from the model which will be presented in detail below.
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Figure 4. Experimental phonon frequencies measured by inelastic neutron scattering in LiYF4

at room temperature together with the calculated phonon dispersion curves on the0KZ, Z0
and0X lines of the Brillouin zone (limited on the graph to 8 THz for clarity).

4. Calculation of the phonon spectrum

The phonon spectrum of LiYF4 has been calculated with a rigid ion model (RIM) [8]. It is
quite clear that such a model is not ideal to account for the experimental observations. But
our main purpose is to deal with as few adjustable parameters as possible, including those
which can be estimated from data reported in the literature [4], in order to get a description
of the lattice dynamics which could be used for other scheelites. This choice is nevertheless
expected to be reasonable as LiYF4 has only weak ionic polarizability.

4.1. Parameters of the rigid ion model

Following Cowley [9], the short-range potential energy is considered as a sum of axially
symmetric pair interactions. Two force constants correspond to each pair given by the
second derivative of the corresponding short-range potentialVi , namely:

Ai = ∂2Vi

∂r2
i//

)
eq

Bi = ∂2Vi

∂r2
i⊥

)
eq
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Table 3. Parameters of the rigid ion model in LiYF4 after the fitting procedure used in this
paper. The short-range force constants reported in italic have been calculated from the F–F
interionic potential given in [4] and were kept constant during the fitting procedure. For an
easier comparison, we also report the most important short-range force constants that have
been deduced by other authors in compounds which involve the same ionic pairs: Dörfler [10]
for LiTbF4, Boumricheet al [16] in BaLiF3, and those we deduced from the Li-F interionic
potentials from Catlowet al [17] with the appropriate distance.

i Ion pair di (Å) Ai(N m−1) Bi(N m−1)

For this papera 1 Li–F 1.898 64.0 −10.0
LiYF 4 2 Y–F 2.244 134.4 −11.2

3 Y-F 2.297 116.7 −10.3
4 F–F 2.597 18.0 −3.2
5 F–F 2.747 12.7 −2.7
6 F–F 2.767 12.2 −2.6
7 F–F 2.832 11.1 −2.3
8 Li–F 2.898 5.4 −0.9
9 F–F 2.954 8.9 −1.7

For other authorsb Li–F 1.897 71.1 −12.4
LiTbF4 [13] Y–F 2.272 133.3 −13.5

Y–F 2.321 119.9 −10.8
BaLiF3 [15] Li–F 1.998 46.2 −1.717
LiF [16] Li–F 1.898 set 1 80.3 −11.1
(interionic potentials) set 2 86.8 −12.6

Ionic effective charges (expressed in|e| units).
a Z∗F = −0.770 (imposed);ZLi∗ = 0.757 (ZY∗ = 2.323).
b LiTbF4 : Z∗F = −0.785;Z∗Li = 0.889 (Z∗Tb = 2.250);
BaLiF3 : Z∗F = −0.771;Z∗Li = 0.759 (Z∗Ba = 1.554);
LiF: set 1Z∗F = −0.981, set 2 effective charges.

where eq stands for equilibrium position andi refers to theith pair of ions. As previously
carried out by D̈orfler [10] for the isomorphic compound LiTbF4, we will consider the nine
shortest distances, which yield 18 short-range parameters in the model.

The electrostatic long-range interactions will be defined through effective ionic charges
Z∗i [11]. Due to the condition of charge neutrality, this gives two further parameters. Thus,
even in this simple model, a total of 20 parameters has to be considered.

To decrease the number of adjustable parameters, we used the information from [4] to
fix the effective charge to−0.77|e| and to calculate the fluorine–fluorine (F–F) short-range
force constants (SRFCs) from the Born–Mayer potential:

VF−F(r) = λ exp(−r/ρ) with ρ = 0.582 Å and λ = 481 Nm−1Å
−2

The only exception concerns the shortest F–F distance (see table 3) which is well under the
distances for which the Born–Mayer parameters have been calculated (2.8–3.2Å); the corre-
sponding short-range parametersA4 andB4 hence remained free during the fitting procedure.

The remaining 11 parameters in the model have been adjusted with the help of the
GENAX2 program of Reichardt, implemented at the LLB. The starting model was based
on the zone-centre phonons [12–14], infrared or Raman active (see paper I), and on the
slopes of acoustic branches in the three main directions0KZ, Z0 and0X of the reciprocal
lattice, as deduced from ultrasonic velocities measurements [15]. Then, the successive
models were improved by including the latest inelastic neutron-scattering results, taking
into account both the frequencies of the modes and the corresponding intensities. Such an
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Table 4. Frequencies (in THz) of zone-centre phonons in LiYF4 at room temperature. Calc
index: frequencies calculated with the parameters of the rigid ion model presented in table 3.
Meas index: measured frequencies (see paper I). The average discrepancy between the 29
measured zone-centre phonons and their calculated value is 4.6%.

Raman active modes:1ν/ν = 3.5%

Ag Bg Eg

νmeas νcalc 1ν/ν νmeas νcalc 1ν/ν νmeas νcalc 1ν/ν

(THz) (THz) (%) (THz) (THz) (%) (THz) (THz) (%)

4.53 4.47 1.3 5.22 5.64 8 4.62 4.56 1.3
7.95 7.17 9.8 7.38 7.75 5 5.97 6.35 6.3

12.81 12.58 1.8 9.81 9.57 2.4 9.78 9.35 4.4
11.37 11.08 2.5 11.19 11.35 1.4
12.81 12.68 1 13.41 13.45 0.3

1ν/ν 4.3% 3.8% 2.7%

Infrared active modes:1ν/ν = 5.5% (5.7% for TO modes and 5.35% for LO modes).

Au Eu

νmeas νcalc 1ν/ν νmeas νcalc 1ν/ν

(THz) (THz) (%) (THz) (THz) (%)

TO1 5.94 5.75 3.2 TO1 4.11 4.69 14.1
LO1 6.6 6.15 6.8 LO1 5.13 5.86 14.2
TO2 7.53 8.17 8.5 TO2 8.83 8.38 5
LO2 8.41 8.94 6.3 LO2 9.24 8.78 5
TO3 10.19 9.71 4.7 TO3 9.75 9.67 0.8
LO3 10.84 11.61 7.1 LO3 11.01 10.81 1.8
TO4 11.16 12.08 8.2 TO4 12.54 12.72 1.4
LO4 16.11 15.91 1.2 LO4 16.8 16.87 0.4

1ν/ν TO: 6.15 TO: 5.3
LO: 5.35 LO: 5.35

approach was necessary due to the small number of different symmetries (see section 2) and
to the large number of dispersion branches in a fairly narrow frequency range (the cut-off
frequency in fluoride compounds is generally below 600 cm−1).

The final set of parameters has been reported in the first part of table 3. With these
values, the average discrepancy between calculated and measured frequencies was less than
5%, even for zone-centre modes, as shown in table 4.

As seen in the first part of table 3, the Y–F interactions yield the strongest SRFCs, even
though the corresponding interionic distances are much greater than the shortest Li–F one.
This is obviously due to the difference of valence between interacting ions, namely+III /−I
for a Y–F pair, and only+I/− I for a Li–F pair. No short-range force constants for Y–F
interactions are reported in the literature, but the values we obtained can be compared with
the Tb–F SRFCs in LiTbF4 [10] (see the second part of table 3). Y3+ and Tb3+ have indeed
the same external electronic configuration (5so and 6so respectively), and their ionic radii,
within a coordinate of eight fluorine ions, are very close (1.16 and 1.18Å respectively [1]).
Concerning Li–F interactions, our values may be directly compared (see table 3) to those
obtained in LiTbF4 [10], BaLiF3 [4, 16], and to the values we may deduce, with the adapted
distance, from Li–F interionic potentials [17] defined in LiF, a NaCl-type crystal. Finally,
the two parametersA4 andB4 which remained free during the fitting procedure only deviate
by 10% from their initial value, deduced from the F–F interionic potential. The values
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obtained for these particular two parameters are also consistent with those obtained inMF3

compounds(M = Al ,Ga,Cr,Fe,V) where the same interionic distances are encountered
[18].

4.2. Calculated phonon dispersion curves, density of states and atomic movements

4.2.1. Phonon dispersion curves.The dispersion curves, calculated with the model
described above, are drawn in figure 4 together with experimental data along the [100],
[110] and [001] directions of the quadratic Brillouin zone. For clarity, the frequency interval
has been limited to [0, 8THz]. The agreement between calculated and measured dispersion
curves is generally fairly good, even though some systematic discrepancies may be pointed
out. The first one comes from the fact that we did not succeed in avoiding the permutation
of the first Eu (TO) and Eg modes between model and experiment. The other one concerns
the two lowest-frequency modes at theX point. Indeed they are depending on several
orthoradial force constants(Bi) which are also involved in modes atX, Z and0 points.
The reported RIM parameters are those that lead to the best compromise.

Nonetheless, it is worth noting that we have obtained an overall agreement on 29 Raman
and IR frequencies and our neutron data, including dynamical structure factors, with the
refinement of only 11 parameters. This supports the assumption that we have made of the
transferability of the F–F interionic potential.

4.2.2. One-phonon density of states.The one-phonon density of statesg(ω) has been
calculated using the set of parameters from the first part of table 3. The result is plotted in
figure 5(a). The calculated cut-off frequency is in the vicinity of 600 cm−1, as generally
observed in fluoride compounds.

Figure 5(b) shows the partial density of statesgi(ω), with g(ω) = gLi (ω) + gY(ω) +
gF(ω), which represent the weighted contribution of each ionic species. Three frequency
intervals may be considered:

(1) 0–∼200 cm−1: gF(ω) andgY(ω) are quite identical, whereasgLi (ω) is near zero; the
vibrations in this frequency range essentially imply ions of the YF8 ‘double tetrahedron’.

(2) 400–∼600 cm−1: here,gF(ω) and gLi (ω) are quite identical, whilegY(ω) is near
zero; the vibrations essentially imply motions in or between LiF4 tetrahedra.

(3) 200–∼400 cm−1: in this intermediate frequency range,gLi (ω) andgY(ω) are quite
weak compared withgF(ω); hence the vibrations are essentially those of fluorine ions.

Nonetheless, there are no real gaps between these three ‘categories’ of modes as could
occur in oxide scheelites where one can discriminate between internal and external modes.
In the present case, only lattice dynamical calculations may bring information on the real
atomic movements.

4.2.3. Calculated atomic displacements.We reported in figure 6 the main components of
the calculated eigenvectors corresponding to some of the Raman or IR-active modes. These
movements may be expressed on the basis of the ‘modes’ that have been defined by Miller
et al [13] in terms of internal coordinates compatible with the symmetry. It can be seen,
for example, that the third Ag mode (12.81 THz) is associated with a stretching of the LiF4

tetrahedron; the second Bg mode may be described as an angular deformation of the LiF4

entity and so on. Nonetheless, the movements are generally much more complicated, but
they can always be decomposed in a sum of Miller’s ‘modes’: the first transversal Eu mode
(ν(TO1) = 4.11 THz) is then a combination of a Y3+ translation in the (001) plane, plus
a rotation around thea-axis of the fluorine ions in LiF4, and finally an angular distortion
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Figure 5. The normalized one-phonon density of states calculated within a rigid ion model with
an energy step of 0.5 meV: (a) g(ω), total density of states. Inset: detail of the low-frequency
range, the full curve represents the behaviour according to Debye’s lawg(ω)αω2. (b) gi(ω),
partial density of states for each kind of atom withgLi (ω)+ gY(ω)+ gF(ω) = g(ω).

(‘ν2’). So the present modelization shows that most of the Raman and infrared active
modes of LiYF4 cannot be described in terms of simple vibrations of the polyhedra. This
is a consequence of the strong coupling between internal and external modes as previously
mentioned about the density of states.

In paper I, the comparison of the frequencies of zone-centre vibrational modes in the
LiLnF4 series of compounds(Ln = Ho,Er,Tm,Yb;Y) has shown that, surprisingly, the
heavyLn ions are not involved in the lowest frequency Au and Eu modes, their frequencies
being not dependent on the trivalent ion’s nature. The present model is in agreement with
such a behaviour, the Y atoms being at rest for these two modes. On the other hand, our
calculations show that the two lowest frequency Bg and Eg modes and the two following
Au and Eu modes imply important movements of Y3+, as experimentally observed: these
modes are the most significantly affected by the substitution of heavierLn for Y.

5. Conclusion

This work gives a description of the lattice dynamics in scheelite compounds, including the
irreducible representations of the wavevectors point groups, the corresponding symmetry-
adapted eigenvectors and their compatibility relations at high symmetry points of the
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Figure 6. Main components of the eigenvectors corresponding to some of the Raman- and
infrared-active modes, calculated with the rigid ion model presented in table 3 (with experimental
frequencies in parentheses). The displacements are only represented for half the unit of structure,
the displacements of the other ions in the primitive- cell being deduced by the inversion symmetry
operation (see figure 1), with respect to the symmetry of the mode under consideration, namely
u (antisymmetric) or g (symmetric).

Brillouin zone. The dispersion curves and the phonon density of states have been determined
for the fluoride scheelite LiYF4. The experimental study by inelastic neutron scattering as
well as the calculations show that, in opposition to oxide scheelites where internal and
external modes can be differentiated, these are coupled in fluoride scheelites.

The parameters of a rigid ion model have been deduced by using a F–F interionic
potential, previously determined in fluoride perovskites, to impose the F–F parameters,
and adjusting the other force constants. The proposed model reproduces satisfactorily
the experimental frequencies, measured either by inelastic neutron-scattering or by IR and
Raman scattering; it also gives a reliable description of the peak intensities in the inelastic
neutron-scattering spectra. Hence this model seems to be well adapted to calculate the
vibronic contribution in the luminescence spectra of LiYF4 doped with ions like U3+ and
Ce3+ for which the electron–phonon coupling is stronger than usually observed for rare-earth
ions.

As already mentioned, we obtained a correct description of the LiYF4 experimental
phonon spectra even though half of the parameters in the rigid ion model have been
imposed on the basis of a F–F interionic potential determined in compounds with a different
structure. This is a good indication that this potential may be transposed from one crystalline
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structure to another. Thus phonon spectra calculated with the same method in more complex
structures than scheelites should be reliable. Such a calculation inβ–YF3 is in progress.
Besides, the Y–F and Li–F short-range force constants we have obtained may now be used
to the determination of corresponding interionic potentials.
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